
FPGA-Accelerated Samplesort for Large Data Sets
Han Chen, Sergey Madaminov, Michael Ferdman, Peter Milder

Stony Brook University
{han.chen.2,peter.milder}@stonybrook.edu,{smadaminov,mferdman}@cs.stonybrook.edu

ABSTRACT
Sorting is a fundamental operation in many applications such as
databases, search, and social networks. Although FPGAs have been
shown very effective at sorting data sizes that fit on chip, systems
that sort larger data sets by shuffling data on and off chip are
bottlenecked by costly merge operations or data transfer time.

We propose a new technique for sorting large data sets, which
uses a variant of the samplesort algorithm on a server with a PCIe-
connected FPGA. Samplesort avoids merging by randomly sampling
values to determine how to partition data into non-overlapping
buckets that can be independently sorted. The key to our design is a
novel parallel multi-stage hardware partitioner, which is a scalable
high-throughput solution that greatly accelerates the samplesort
partitioning step. Using samplesort for FPGA-accelerated sorting
provides several advantages over mergesort, while also presenting
a number of new challenges that we address with cooperation
between the FPGA and the software running on the host CPU.

We prototype our design using Amazon Web Services FPGA
instances, which pair a Xilinx Virtex UltraScale+ FPGA with a
high-performance server. Our experiments demonstrate that our
prototype system sorts 230 key-value records with a speed of 7.2
GB/s, limited only by the on-board DRAM capacity and available
PCIe bandwidth. When sorting 230 records, our system exhibits
a 37.4x speedup over the widely used GNU parallel sort on an
8-thread state-of-the-art CPU.

CCS CONCEPTS
• Theory of computation → Sorting and searching; • Hard-
ware→ Hardware accelerators.

KEYWORDS
sorting; samplesort; partitioning; FPGA

ACM Reference Format:
Han Chen, Sergey Madaminov, Michael Ferdman, Peter Milder. 2020. FPGA-
Accelerated Samplesort for Large Data Sets. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’20), February 23–25, 2020, Seaside, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3373087.3375304

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’20, February 23–25, 2020, Seaside, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7099-8/20/02. . . $15.00
https://doi.org/10.1145/3373087.3375304

1 INTRODUCTION
Sorting data has always been one of the fundamental computing
operations. In the early days of computing, studies showed that
25% of all CPU time was spent on sort [13]. Today, application com-
plexity has increased and data sets have grown to unprecedented
sizes, with sort remaining a critical component of the dominant dat-
acenter workloads such as large-scale data warehouses, databases,
and web search. At datacenter scale, there is a constant need for
large-scale sorting operations [9, 10], with performance and cost
of running sort being a major consideration of application design.

The popularity of the sort operation has led to the development
of many sorting algorithms with different properties, including the
ubiquitous quicksort [11, 12] and mergesort [5]. However, funda-
mentally, the von Neumann architecture of modern CPUs is not
well-suited for sort, regardless of algorithm, as CPUs are unable
to leverage the vast available parallelism of the comparison oper-
ations. Moreover, sort is challenging not only for CPUs, but also
for accelerators. Although sorting accelerators are able to exploit
ample internal parallelism, sorting large data sets requires partition-
ing them into buckets and then aggregating the sorted buckets, an
operation that has traditionally been bottlenecked on the memory
bandwidth available to the accelerator.

Although many sorting accelerators have been proposed in the
literature, none are able to simultaneously support large data sets
and achieve high performance. Streaming sorting networks such as
Spiral provide extremely fast sorters whose data set sizes are lim-
ited by the capacity of the on-chip memories (BRAMs and URAMs)
available on the FPGA [24]. Accelerators that tackle larger sorting
tasks divide large data sets into smaller buckets and combine the
resulting buckets by performing multi-way merges either in soft-
ware [23] or in hardware [16–19, 21, 22]. However, merge-based
techniques also fall short due to their high resource costs and multi-
ple memory round-trips required by the merge implementations. To
achieve high performance on sorting large data sets, we therefore
pursue an approach that avoids merging.

We propose a new technique for using FPGAs to accelerate the
samplesort algorithm, which avoids merging by partitioning data
into buckets that can be sorted and concatenated together. The key
to our design is a novel parallel multi-stage hardware partitioner,
which consists of multiple partitioner cores operating in a pipeline.
Each partitioner stage splits data into approximately equal-sized
buckets of non-overlapping data (i.e., where all values in the ith
bucket are guaranteed to be less than all values in the (i+1)th bucket,
but values within a bucket are not necessarily sorted). The buckets
are stored by the partitioner in the off-chip memory accessible to
the FPGA, and then read back from off-chip memory by the next
partitioner stage, or by a parallel sorting network [24] that writes
the final sorted sequence back to the host over PCIe.

https://doi.org/10.1145/3373087.3375304
https://doi.org/10.1145/3373087.3375304

Our partitioner approach is fundamentally more scalable than
prior work that was based on merging sorted buckets. The main dif-
ference between a mergesort based system and a samplesort based
system is that the samplesort approach uses partitioning before
sorting, whereas mergesort uses merging after sorting. The benefit
of the partitioning approach is that each record is independent,
whereas the merging process must compare records to each other.
This independence allows us to construct an inexpensive and high-
throughput partitioner that can split data across a large number of
buckets. By virtue of the partitioner’s cost-efficiency, we are able to
construct a multi-stage pipelined partitioning system that handles
a large number of buckets while maintaining high throughput.

Using samplesort for FPGA-accelerated sorting provides several
advantages over mergesort, while also presenting a number of new
challenges that we address with cooperation between the FPGA and
the software running on the host CPU. First, samplesort relies on an
initial random sampling to ensure that buckets are of approximately
equal size. Although slow and resource-intensive for an FPGA, ini-
tial random sampling is well-suited to run on a high-performance
CPU; we therefore perform it in software. Second, although random
sampling ensures that buckets will be of approximately equal size
with high probability, occasional outliers are possible, with some
buckets being larger than expected by the hardware. In this case,
our hardware implementation detects this rare event and triggers a
software function to re-sort the bucket in parallel with the FPGA
sorting the subsequent buckets. Furthermore, our experimental
results show that these outliers are extremely rare in practice (e.g.,
1 out of 218 buckets in a typical test). Finally, even with the effi-
cient partitioning hardware design, the data set size that the FPGA
can sort is still limited by the FPGA on-board DRAM capacity (64
GB in our prototype). To scale to larger data sets, we rely on the
CPU to perform an initial coarse-grained partitioning operation,
decomposing data into portions that fit within this constraint.

We designed and evaluated our prototype hardware and soft-
ware system using an Amazon F1 FPGA instance, comprising an
8-thread CPU connected via PCIe to a Xilinx Virtex UltraScale+
(XCVU9P) FPGA with 64 GB of on-board DDR4 memory. Our pro-
totype operates on a data set of 230 14-byte records (10-byte key
and 4-byte index), which is larger than any data set running on
prior high-throughput FPGA sorting systems, and demonstrates
that our system can saturate PCIe bandwidth in a single round trip
from host memory to FPGA and back to host memory with a speed
of 7.2GB/s. The size of the data set that the prototype system can
process at this rate in hardware is only limited by the on-board
DRAM capacity. Overall, we demonstrate a 37.4x speedup over the
widely used GNU parallel sort on an 8-thread state-of-the-art CPU
when sorting 230 records.

The rest of this paper is organized as follows. In Section 2, we
present our motivation for choosing samplesort for FPGA accelera-
tion of sorting. In Section 3, we introduce our approach to accel-
erating samplesort and describe our hardware-software strategy.
Section 4 presents a detailed view of our hardware architecture.
Section 5 describes the hardware partitioner and Section 6 describes
the structure of the hardware sorter. Section 7 presents the imple-
mentation of the hardware and software in our prototype system.
Lastly, Section 8 evaluates our prototype system on an Amazon F1
instance and Section 9 offers concluding thoughts.

2 MOTIVATION
Given the rich history of sorting algorithms and implementations,
it may initially be surprising that a high-performance FPGA design
for sorting large data sets did not previously exist, requiring us
to develop a novel technique. We therefore begin our discussion
of sorting large data sets on FPGAs by explaining the motivation
behind the various parts of our design and how theywere influenced
by the prior work in the field.

In the literature, there are many examples of accelerator designs
that focus on high-throughput hardware structures for sorting on-
chip data. These techniques effectively leverage the compute par-
allelism available on FPGAs to yield extremely high-performance
implementations. However, the performance of these accelerators
relies on the massive on-chip memory bandwidth of BRAMs and
URAMs, which fundamentally limits the size of the data sets that can
be sorted to ones that can fit into these low-capacity on-chip memo-
ries. Prominent examples of this approach are the Spiral streaming
sorting networks [24], which represent a class of flexible sorting
hardware structures that can scale to different cost-performance
trade-offs. Using Spiral [24] to generate a high-throughput sorter
yields high performance (e.g., 32 GB/s throughput), but can only
accommodate data sets of up to 217 records before running out of on-
chip storage on a Xilinx Virtex UltraScale+ VU9P FPGA. Although
alternative accelerator designs (including other Spiral configura-
tions) can trade some performance to handle slightly larger data
sets, accelerators such as those built by Spiral are inherently limited
by the total available on-chip memory. Despite streaming sort-
ing networks being unable to handle our target data set sizes (230
records), they provide a useful building block for larger sorters. For
our prototype, we use the Spiral generator to produce the sorting
unit that we incorporate into our design.

To handle large data sets, the records to be sorted must be divided
into smaller buckets, whose size is determined by the maximum
practical size of the underlying sorting unit. The buckets can be
independently sorted while their contents are on chip, but all buck-
ets must be temporarily stored in off-chip memory (i.e., DRAM)
so that they can be later combined to form the final single sorted
sequence. A natural approach to combine the buckets is by having
software merge them, using the CPU to stream through the buckets
and selecting the lowest record among the buckets at each step [23].
However, although this approach is capable of accelerating sorting
of data sets that do not fit into on-chip FPGA memories, using
software to perform a multi-way merge quickly becomes the bottle-
neck of the system. As a result, using a software merger to combine
buckets yields only a modest increase in the data set size that can
be practically sorted by this approach, allowing sorting of fewer
than 225 records with 4-byte keys, or even fewer records with the
10-byte keys that we target. Notably, this is the only full-system
sorter design capable of handling large data sets that we were able
to find in the literature, yet it falls short of being able to sort our
target data sets.

The limits of software merging have been recognized, and FPGA-
based solutions for merging buckets stored in off-chip memory
have been investigated recently. For example, the FIFOmerge sorter
and tree merge sorter structures were demonstrated by sorting a
stream of approximately 229 values produced by a random-number

generator [14]. This approach demonstrated a practical hardware
merger implementation capable of merging 27 buckets. Unfortu-
nately, the throughput achieved by these structures (sorting 4-byte
keys) was only 667 MB/s, which falls below the performance of
sorting on a non-accelerated multi-core CPU. Another design, the
merge sorter tree, was shown to merge up to 4096 buckets [22].
However, the throughput and peak frequency of the merge sorter
tree are constrained by its feedback path. The resulting design can
produce only one record per cycle at 150MHz, severely limiting its
performance. More efficient hardware parallel merge trees were
proposed to improve the feedback path and output multiple records
per cycle [16, 18, 19, 21]. Most recently, the Fast Lightweight Merge
Sorter [17] was demonstrated with 2-way merge that produces
64 records per cycle. Overall, we found that all existing hardware
merger designs share common pitfalls. To achieve high perfor-
mance, mergers require large amounts of FPGA resources, which
limits the number of buckets that can be merged and leaves little
room for a sorting unit to sort the individual buckets. Moreover,
mergers that achieve high throughput are unable to concurrently
merge many buckets in a single pass, losing performance due to
requiring multiple round-trips to off-chip DRAM to perform a full
sort. As a result, although designs for hardware mergers are avail-
able, none have been used to build an FPGA-based accelerator for
sorting large data sets that could compete with a modern CPU.

Because of the limitations of hardware mergers, our aim was to
develop a sorting system for large data sets that combines buckets
without merging in software or hardware. Our search led us to ex-
plore the less well-known samplesort algorithm as the foundation
of our implementation [8]. Samplesort begins by partitioning the
records to be sorted into non-overlapping buckets, such that the
elements within each bucket are in random order, but the relative
sorted order of the buckets is known. The buckets are then indi-
vidually sorted and the sorted results are written directly into the
appropriate location in the output sequence. The output location of
each sorted bucket is precisely known after completing the initial
partitioning step, because the relative ordering of the buckets and
the number of elements in each bucket are known at that point.

The key strength of samplesort arises due to its approach for se-
lecting splitters, the keys that determine bucket boundaries used by
the partitioning step. Traditional bucket sort implementations were
considered and abandoned by prior work [14] because they suffer
from radically varying bucket sizes that depend on the distribution
of the input data. Conversely, we pursued samplesort because, with
high probability, it selects bucket boundaries such that the buckets
are all of approximately equal size, making the algorithm amenable
to implementation with fixed bucket capacities. In the rare event
that a bucket exceeds its target capacity, our design informs the
software about the overflow, allowing it to recover by re-sorting
the overflowing bucket.

Finally, we note that, unlike merging, where elements from all
buckets must be compared against each other, the partitioning pro-
cess can treat each record completely independently. This makes
the partitioning process well-suited for implementation as a set
of independent parallel streaming accelerators that are relatively
inexpensive in terms of FPGA resource consumption, as no com-
parisons are required among concurrently processed elements and
all comparators can be easily pipelined without any feedback paths.

Algorithm 1: Samplesort Algorithm.
1 Function SampleSort(R[r1, r2, ..., r2N],k, P)
2 Select k ∗ 2P samples from R. S = [S1, S2, ..., Sk∗2P] ;
3 Sort the samples S ;
4 Select 2P − 1 splitters,

[s0, s1, ..., s2P−2] = [Sk , S2k , ..., Sk (2P−1)];
5 foreach r ∈ R do
6 Put r into jth bucket bj such that sj−1 < r ≤ sj ;
7 Return concatenate(Sort(b0), Sort(b2), ..., Sort(bk−1));

As a result, our partitioner design easily achieves the target, ap-
proaching ∼ 8 GB/s throughput with data arriving via the PCIe
Gen3 x16 interface when sorting 230 records with 10-byte keys.

3 FPGA ACCELERATION OF SAMPLESORT
This section presents a high-level overview of our novel FPGA/CPU
technique for sorting large data sets. First, Section 3.1 introduces
the samplesort algorithm and Section 3.2 details our strategy for
accelerating it using hardware and software. Then, Section 3.3
discusses how we use software to enable further scalability.

3.1 Samplesort
Samplesort is a sorting algorithm often used in parallel processing
systems [2, 4, 15, 20]. The algorithm, illustrated as pseudocode in
Algorithm 1, operates in three stages: sampling, partitioning, and
sub-sorting. First, the sampling stage (lines 2–3), samples a portion
of the input records to estimate the distribution of the data set;
it chooses a set of records and sorts them. Next, the partitioning
stage (lines 4–6) selects a set of these records as splitters, which
are used to define the ranges of non-overlapping buckets. Records
are partitioned into buckets by comparing each record with the
values of the splitters. Then, the sub-sorting stage (line 7) sorts each
bucket and concatenates them to produce the final sorted sequence.
Because buckets are independent, sorting them is an independent
parallelizable operation.

Because efficient parallelization relies on the buckets having
similar size, a key consideration is in the size of the random sample
used for estimating the data distribution. Larger sample sizes result
in better estimates of the data distribution and less variability in
the bucket sizes. To partition data into 2P buckets, we choose k ×

2P random records as candidate splitters, where k is called the
oversampling ratio. This results in a calculable upper bound on
the probability that a bucket grows beyond a given size [6]. In
practice, choosing an appropriate k ensures that there is a near-zero
probability that any given bucket will be larger than a desired upper
bound; in the rare instances where this upper bound is exceeded, the
situation can be detected and corrected by re-sorting that bucket,
albeit at a small cost to performance. Our prototype uses k = N ,
similar to CPU-based samplesort implementations, where 2N is the
total number of records to sort.

3.2 Hardware-Software Samplesort Strategy
Typical hardware sorters, such as streaming sorting networks [24],
require storing all input, output, and intermediate data on chip.

Figure 1: CPU-FPGA samplesort strategy.

Algorithm 2: FPGA Accelerated Samplesort Algorithm.
1 Function FPGASampleSort(R[r1, r2, ..., r2N],k, P)
2 Select k ∗ 2P samples from R. S = [S1, S2, ..., Sk∗2p];
3 Sort the samples S ;
4 Select 2P − 1 splitters,

[s0, s1, ..., s2P−2] = [Sk , S2k , ..., Sk (2p−1)];
5 Send splitters and configuration to FPGA;
6 Send records R to FPGA;
7 Wait for FPGA to return the result to R;
8 Re-sort any oversized buckets;
9 Return R;

These sorters are therefore very fast, but the amount of data they
can sort is necessarily limited by the amount of available on-chip
memory. To sort larger data sets, we propose a new strategy to
implement samplesort using hardware and software. The system
first breaks down input records into buckets (each of which can fit
in on-chip memory), and then sorts each bucket to form the final
result.

This process is illustrated in Figure 1 and Algorithm 2. First,
the system begins with 2N = 2P+S−1 records in host memory.
Software samples the records and sorts the sample to create splitters.
The splitters, records, and configuration information are streamed
from the CPU to the FPGA via PCIe. Inside the FPGA, a hardware
partitioning module partitions the records into 2P buckets; each
bucket holds an average of 2S−1 and a maximum of 2S records.
The FPGA stores these buckets in the FPGA’s on-board DRAM.
Each bucket is then read from the DRAM into a streaming sorting
network; the maximum bucket size 2S is chosen to allow all data to
fit on-chip, ensuring that each bucket can be sorted efficiently. After
sorting, the buckets are concatenated and streamed back to the host.
Lastly, the CPU will correct any problems caused by occasional
oversized buckets (those with > 2S records).

As an example, the prototype system we describe and evaluate
in Section 7 targets 2P+S−1 = 230 records in hardware, with P = 18
and S = 13 (that is, the partitioner splits data into up to 218 buckets
and the sorter sorts buckets of up to 213 records). Our results show
that the capacity of the prototype system (i.e., the values of N , S ,
and P) is limited only by the size of the on-board DRAM capacity
and not the available FPGA resources.

3.3 Scalability
The number of records to be sorted by the proposed hardware-
software system is inherently scalable. The hardware control logic

Partitioner
1st stage Sorter

Interconnect

DRAM

Host Memory

Data Frame Result

Unsorted
Index

CPU

DMA

PCIe Bridge

Partitioner
2nd stage

Partitioner
m th stage...

Bucket
Counts

SplittersSplitters

Figure 2: Overview of the sorting system.

is designed to be flexible to efficiently accommodate smaller data
set sizes, dynamically adjusting the amount of partitioning required
to ensure high throughput. Specifically, when sorting a data set
of < 2N records, the system will reduce the number of buckets to
maintain the average bucket size of 2S−1 records. This is important
because smaller buckets would lead to under-utilization of the
hardware sorter and an unneeded loss of performance. Furthermore,
our system handles any number of records; in this paper, 2N is
chosen for readability of formulas and results. Both our partitioner
and sorter can accept arbitrary-size input.

A different challenge is observed when the data set grows to
sizes larger than the FPGA’s on-board DRAM capacity. That is, the
hardware system can sort 2N = 2P+S−1 records, but N is limited
by the on-board memory. With sufficient DRAM, N can be quite
large (e.g., our prototype system can sort up to 2N = 230 records in
hardware); beyond that, further scalability requires extending our
approach through software. For larger data sets, the system can
perform an initial layer of partitioning using the CPU. For example,
if one wants to sort a data set of 2H+N records with a hardware
system that sorts 2N , the CPU will first sample and partition this
dataset into 2H buckets of average size 2N . Now, these 2H buckets
can stream to the FPGA to be sorted, and their results concatenated
in software. Although the extra CPU processing will increase the
runtime of the system, it can allow further scalability up to the
host’s DRAM capacity.

4 HARDWARE ARCHITECTURE
In this section, we describe the overall hardware architecture of
our FPGA-accelerated samplesort system. Later, Sections 5 and 6
will provide a detailed look at the internals of the partitioners and
the sorter subsystem, respectively.

Figure 2 presents an overview of our design. At the top of the
diagram, the CPU communicates with the FPGA through PCIe. The
CPU configures a hardware DMA module to stream data between
host memory and hardware accelerators. The accelerators operate

as a pipeline, including multiple partitioners (which operate in mul-
tiple stages, each partitioning the data into an increasing number of
buckets) and a sorter (which will sort each bucket). Input records
are streamed into the first partitioner; from there, they will pass
through the following partitioner cores and the sorter, eventually
streaming back to the host memory. The intermediate data in each
stage are stored in the off-chip DRAM, while associated metadata
needed for control are directly forwarded to the next stage. The
dashed lines in Figure 2 show memory-mapped channels which
allow direct access between the host memory/CPU and the parti-
tioners and sorter. These channels allow partitioners to retrieve
their splitters from host memory and allow the the sorter to inform
the software of any oversized buckets that must be re-sorted.

Each sorting task is packaged into a data frame and streamed
to the first partitioner. A data frame contains a descriptor with
configuration information, the set of splitters for the first stage par-
titioner, and the records to be partitioned and (eventually) sorted.
The first partitioner processes the data frame descriptor and for-
wards additional configuration data to the rest of partitioners and
the sorter. After configuration, the first stage partitioner partitions
the data from the input stream into 2P0 buckets and stores them
in off-chip memory. Each of the remaining partitioners will read
the previous stage’s results from DRAM, partition the bucket into
finer-grained buckets, and write the resulting buckets back to the
on-board memory while sending the bucket sizes to the next stage.
After going through the requisite number of partitioning stages, the
data set in DRAM has been partitioned into 2P = 2P0+P1+...+Pm−1

buckets.
The sorter then reads buckets from memory, sorts each one, and

outputs the sorted records. The stream of sorted results is sent to
the host memory by the hardware DMA system. Meanwhile, if
there are buckets larger than the hardware sorter’s capacity, the
sorter indicates this to the host by writing to a predefined location
in the host memory.

5 PARTITIONING HARDWARE
This section presents our novel hardware partitioning system. First,
we describe the design of each partitioning core. Then we show
how we use multiple partitioning cores to form a larger multi-stage
partitioning system.

5.1 Parallel Partitioner
A partitioner takes as input a stream of records and a set of splitters
that define the boundaries of the desired buckets. The partitioner
then compares each record with the splitters to determine in which
bucket each record should be placed. Lastly, the partitioner moves
each record to a location in memory that corresponds to its bucket.
The partitioning can be parallelized to increase throughput (e.g.,
to match the rate that records arrive via PCIe). Figure 3 illustrates
a top-level view of the partitioner, which consumes w records in
each clock cycle, distributing data tow parallel cores (which each
consume one record per cycle).

Before the partitioner can begin receiving records, it must take
in the set of splitters, which are then stored in on-chip memory
in each parallel core. Input records are then received and aligned
by a dispatcher that distributes them to thew parallel partitioning

Dispatcher

Partitioning
Core 0

Partitioning
Core 1

Partitioning
Core w-1

Write to
On-board

DRAM

Write to
On-board

DRAM

Write to
On-board

DRAM

Bucket
Counts

...

Splitter
Stream

Record
Stream

Figure 3: Overview of the partitioner.

Binary
Search
Tree

Bucket
Buffer

Write
Requester

Records

Splitters

Memory
Write

Counter
RAM

Bucket
Counts

Counter
Stream
FIFO

Figure 4: Partitioning core structure.

cores, each of which has its own independent internal buffer. Once
all input records have been processed, the cores flush their internal
pipelines and transmit their bucket counts to the next stage.

Figure 4 illustrates the design of each of the parallel partitioning
cores. Each core consumes one record per cycle and will partition
records into 2P buckets. Each core includes: a binary search tree
(BST) module, which is responsible for determining the correct
bucket for each record; a bucket buffer, which temporarily holds
values on chip until a burst write to DRAM can be performed;
a write requester, which initiates the memory burst write; and a
counter stream FIFO, which informs the next hardware stage of
the number of records in each bucket. For clarity, Figure 4 omits
control logic, which is used to communicate between modules, stall
the pipeline if needed, and handle any back-pressure received on
its outputs.

The BST is the partitioning core’s key component. It is a pipeline
that accepts and produces one record per cycle; it determines into
which bucket the system should write each record. Its structure is
shown in Figure 5. To partition into 2P buckets, the BST includes
P stages; each represents one level of the tree. Figure 6 shows the
internals for each stage, specifically showing them-th stage, which
will hold 2m splitter values in the Splitter RAM.

As an example, consider the first stage of the pipeline (m = 0),
which holds a single splitter value. By comparing its input record
with its splitter value, the stage will determine if the input record
belongs in the top half or the bottom half of the buckets. This
decision is encoded as a one bit index, which is passed (along with
the unmodified record) to the next stage. Continuing the example,
the Splitter RAM in the second stage (m = 1) holds two splitter
values; it will use the one-bit index produced from the previous
stage to determine which of the two splitter values to compare
with. This comparison again yields one index bit, which is now
concatenated with the index from the previous stage. To generalize,

Stage 0

Stage 1

Stage 2

Record

Stage
P-1

...

...
Record
Index

22 Spliters

21 Spliters

20 Spliter

2P-1 Spliters

Figure 5: The structure of themulti-stage binary search tree.

>

Cat

Reg

Splitter
RAM

Record

Index
m bits Index

m+1 bits

Record

Figure 6: Themth stage in the binary search tree.

stagem uses anm-bit index to determine which of its 2m splitters
to compare with, resulting in anm + 1 bit output index. After all P
stages, the final P bit index represents which of the 2P buckets this
record belongs in.

On each cycle, the BST outputs a record and its corresponding
P bit index. Naively, one could immediately write this record to
the correct location in DRAM. However, this would cause many
small DRAM writes, wasting precious bandwidth. Instead, the par-
titioning core (Figure 4) employs a bucket buffer, constructed using
on-chip memories, to accumulate records until a burst write to
DRAM can be performed. The buffer comprises 2P small memo-
ries (one for each bucket). When the buffer has collected enough
records for a burst write, it forwards the data to the write requester,
which initiates a DRAM write. Lastly, the counter RAM tracks the
bucket counts—the number of records in each bucket. At the end
of processing a data frame, the partitioning core flushes the bucket
buffer to the DRAMs and flushes the bucket counts to the counter
stream FIFO. When the write requester determines that all DRAM
writes have completed, it allows the bucket counts to be output.

As seen in Figure 3, the partitioner usesw parallel cores; to allow
them to work independently, we allow each to write to its own
private region of DRAM. This implies that a bucket’s values are
spread among w locations in DRAM. Our prototype uses w = 4
and four DRAM controllers, enabling one-to-one mapping. For
systems wherew is greater than the number of DRAM controllers,
the partitioning cores require arbitration logic.

5.2 Multi-stage Partitioning
To maximize the supported data set size, it is desirable for the hard-
ware partitioning system to partition data into as many buckets as
possible. However, we observe that the partitioner’s bucket buffer
(as seen in Figure 4) grows linearly with the number of partitions
2P . That is, each time we increase P by one to double the number of
partitions, we also double amount of on-chip memory required by

Data
Loader

Partitoner
1

Splitter
Loader

Data
Loader

Partitoner
2

Splitter
Loader

Partitoner
0

Frame
Parser

Data
Frame

AXI Interconnect

On-board DRAM

Read from
host memory

Bucket
Counts

Bucket
Counts

Figure 7: Multi-stage partitioning pipeline.

the partitioner. To overcome this challenge, we observe an interest-
ing opportunity to trade off-chip DRAM bandwidth to reduce the
on-chip memory cost by replacing a single large partitioner with
multiple smaller ones.

For example, consider two cases: a 28 partitioner versus a pipeline
of two 24 partitioners. Both will result in the same number of
buckets and have the same throughput. The former will partition
data in a single pass, while the latter will need an extra DRAM
round-trip between stages: first it will split data into 24 buckets,
storing each bucket in DRAM. Then, its second stage will read the
buckets from DRAM and partition each into 24 smaller buckets,
yielding a total of 24 × 24 = 28 buckets. The difference between
these two cases is in the size of the bucket buffers: the 28 partitioner
requires 16x more on-chip memory than each of the 24 partitioners.
Overall, the two-stage partitioner requires one-eighth of the buffers
of the single-stage version. However this comes at a cost: the two-
stage partitioner requires 2x more bandwidth as the data must make
an extra round trip on and off chip.

We generalize this idea to anm-stage partitioning system, where
the first stage partitions data into 2P0 buckets, the second stage
partitions each of those buckets into 2P1 smaller buckets, and so on.
Overall, records are partitioned into 2P = 2P0+P1+...+Pm−1 buck-
ets. Asm (the number of stages) increases, the on-chip buffering
costs will decrease but the DRAM bandwidth requirement grows
larger, allowing the designer to choose an appropriate balance given
available resources.

Figure 7 shows an example 3-stage partitioner. The data frame
including configuration, splitters, and records is streamed from the
host memory into a frame parser module, which configures each
partitioner stage. The first stage partitioner partitions data into 2P0
buckets and stores the buckets in the on-board DRAM. Then, it
passes the bucket counts (which indicate the size of each bucket
it just produced) directly to the next partitioner, which reads the
buckets from DRAM and repeats the process.

In our prototype system, the FPGA board has four DRAM chan-
nels which (based on our measurements) can provide approximately
27GB/s bandwidth (bi-directional transfer). This is much higher
than the PCIe bandwidth (approximately 8GB/s) that we use to
provide records to the partitioner. This means that even with two
partitioners sharing the DRAM, the partitioner’s throughput is still
limited by PCIe bandwidth. For this reason, our prototype uses two
P = 9 partitioners to partition data into 29+9 = 218 buckets.

Feeder Flow
Controller

Remainder
Bypass

Unsorted
Data

Reporter

AXI Stream
Spiral Sorter

Stream
Switch

Realignment
Engine

Bucket
Counts

Read from
on-board DRAM

Write to
host memory

Sorted
Records

Figure 8: Sorting subsystem architecture.

6 SORTING SUBSYSTEM
After partitioning, 2P buckets (with an average of 2S−1 records
each) are stored in the FPGA’s off-chip DRAM. Next, the sorting
module reads buckets from memory and sorts them by streaming
them through a parallel sorting network.

The architecture of our sorting module is shown in Figure 8.
Its key component is a modified version of a streaming sorting
network (SSN) from the Spiral Sorting Network IP Generator [24],
which produces high-throughput sorters based on user-provided
parameters.1 Notably, the SSN has several strict input/output and
timing restrictions, which we have loosened to allow the design
to work more effectively as part of our larger samplesort acceler-
ator. Specifically, our system requires flexibility in the number of
elements to sort (because bucket sizes are not uniform) and it must
allow the pipeline to stall due to back-pressure on its output or
delays on its input. To provide this functionality, we added skid
buffers into the SSN’s internal pipeline to allow it to stall if pre-
sented with backpressure on its output, and surrounded the SSN
with several additional modules seen in Figure 8. These modules,
described in detail below, provide additional buffering, padding,
and control; they allow the sorter to tolerate any I/O delays, to
operate on any number of records ≤ 2S , and to report oversized
buckets (> 2S records) to software.

An interesting implication arises from the disparity between the
average bucket size (2S−1 records) and the maximum supported
size (2S records). Previously, we definedw as the number of records
that our partitioner can produce/consume per cycle. Intuitively, the
average throughput of the sorting subsystem should also consume
w records per cycle to match. We observe that an SSN that natively
sorts a maximum of 2S records at 2w records per cycle will exhibit a
throughput ofw records per cycle when sorting our average bucket
(2S−1 records). To account for this, we design the components of
the sorting subsystem to process 2w words per cycle.

In addition to the SSN itself, this sorting subsystem consists of
several additional components, which we describe below.

Feeder. The feeder module is responsible for reading buckets
from the FPGA’s on-board DRAM and preparing them for the SSN.
First, the feeder must know the number of records stored in each
bucket (bucket counts); this information is received from the hard-
ware partitioner, and stored locally. The feeder then issues memory
read requests, buffers them, and forms the results into a stream of
2w records per cycle.

FlowController. The Spiral SSN is designed to operate on buck-
ets of a fixed size (2S records); a new bucket cannot begin entering
1Wewill use the term “SSN” to describe the Spiral-generated streaming sorting network
IP and the term “sorting subsystem” to refer to the system seen in Figure 8 that includes
the SSN and other components.

Output
FIFO

Spiral
Sorting
Network

Count
FIFO

Void
Filler

Void
Remover

Count

Records Sorted
Records

Figure 9: The structure of the AXI Stream Spiral sorter.

the SSN until its input has consumed all 2S . However the dynamic
nature of our system means that typically we will have fewer valid
records to input to it. In this case, the flow controller is respon-
sible for stalling the input stream until the SSN is ready to begin
operating on a new bucket. To do so, the flow controller counts the
number of records passing it and stalls the stream when needed.
Additionally, the flow controller has another important task: if it
observes an oversized bucket (> 2S records), it will output the first
2S records to SSN, while redirecting extra records to the remainder
bypass module.

AXI-Stream Spiral Sorter. The AXI Spiral Sorter, shown in
Figure 9, wraps the Spiral SSN with AXI stream interfaces and an
output FIFO. We modified the Spiral sorting network by adding
stall signals and skid buffers, which can allow the pipeline to safely
stall without requiring that a single high-fanout stall signal reach
every internal register.

Because the SSN requires a full set of 2S records to operate, we
have added a “void filler” module that pads the input stream with
artificial records, which will be removed from its output using a
“void remover” module.

Other Sorting SubsystemModules. If a bucket’s size is larger
than 2S , the remainder bypass module will be used to allow the
overflowing words to bypass the sorter; they are stored in a FIFO.
The Stream Switch can then append these unsorted records at the
end of the sorted portion of the bucket. Such oversized buckets
will be handled by the Unsorted Data Reporter, which writes the
start and end indices of the unsorted sequence into host memory,
allowing the application software to re-sort those rare buckets that
hardware could not completely sort. Lastly, the realignment engine
concatenates the sorted sequences of each bucket into a single AXI
stream and converts them to the bus width used by the output AXI
stream.

7 IMPLEMENTATION
In this section, we describe the hardware and software implemen-
tation of our prototype system.

7.1 Hardware Implementation
To evaluate our design, we created a prototype targeting the Ama-
zon AWS F1 [1] instance which uses a Xilinx Virtex UltraScale+
FPGA (xcvu9p-flgb2104-2-i). This system pairs the FPGA with a
private 64 GB DDR4 memory (split across four channels) and a
dedicated PCIe gen3 x16 interface to the host. For implementation,
we used Xilinx Vivado version 2017.4.

Our prototype, which runs at 250MHz, uses two-stage hardware
partitioning (each stage partitioning data into 29 buckets, i.e., P =
18) and an S = 13 sorter; therefore it can sort sequences up to 2N =
2P+S−1 = 230 records. Each record is a (record-key, record-index)

Table 1: Resource utilization.

Name LUT Flip Flop BRAM URAM
Amazon AWS Shell 221,727 296,609 303.5 43
DMA and Interconnect 79,444 100,422 18.5 0
Partitioner 95,628 72,159 188 128
Sorter 232,738 319,741 571.5 29
Total utilization 629,537 788,931 1,081.5 200
Available 1,181,768 2,363,536 2,160 960
Percentage 53.3% 33.4% 50.1% 20.8%

pair with a 10-byte key and 4-byte index. (Records are sorted based
on their keys.) The system’s parallelism is set tow = 4 records; at
250MHz this allows the prototype to approach the system’s upper
bound on PCIe bandwidth (as we will demonstrate in Section 8).

We implemented all modules in the partitioner and sorter sys-
tems as hand-written Verilog, except the Spiral streaming sorting
network, which was generated by Spiral [24] and modified as ex-
plained in Section 6. The AWS Shell provides AXI4 memory mapped
interfaces for accessing four DRAM controllers and host memory.
It includes hardware logic for the DRAM controllers and the PCIe
endpoint. The DMA and interconnect are implemented with Xilinx
standard IP: AXI DMA v7.1 and AXI SmartConnect v1.0.

Table 1 shows the resource utilization of the prototype’s hard-
ware components. We note that the partitioner and sorter collec-
tively consume a relatively small percentage of the FPGA’s over-
all area (27.8% LUTs, 16.58% registers, 35.16% BRAM and 16.35%
URAM). Even with other components like the AWS shell and the
interconnect, there is still significant room to increase parallelism
(i.e., increasew) or scale the partitioner and sorter to larger sizes
(i.e., increase S and/or P). However, our experimental results (in
Section 8 below) show that the system already saturates PCIe band-
width, meaning increased hardware parallelism will not improve
overall performance. Furthermore, the hardware system’s current
capacity of 2N = 230 is already the maximum that will fit within
the board’s 64GB of DRAM; although we have the FPGA logic avail-
able to increase N , it would not be possible without increasing the
DRAM size.

7.2 Software Implementation
In addition to the hardware design, our prototype includes all nec-
essary software components to interact with the FPGA design and
perform the portions of the algorithm allocated to the CPU.

First, a user-space application performs the functions previously
described in Algorithm 2: sampling data, generating splitters needed
for partitioning, performing software partitioning (only for datasets
> 230 records), and correcting any oversized buckets. The software
also manages memory allocation for the data transfers between
host memory and the FPGA, and makes ioctl() system calls to
the kernel driver (described below) to perform DMA transfers.

Next, we use a hardware driver to manage data transfer between
host memory and FPGA board, and to provide an application pro-
gramming interface for the user to issue sorting tasks. The hardware
driver controls the FPGA’s on-chip hardware DMA module; its reg-
isters are mapped into the kernel space, and the driver translates

Table 2: Amazon AWS F1 instances. “vCPU” refers to the
number of available CPU threads.

Name FPGAs vCPU RAM (GB) Price ($/hr)
f1.2xlarge 1 8 122 1.650
f1.16xlarge 8 64 976 13.200

the virtual addresses of pointers to physical addresses, which can be
then used by the hardware DMA. The software sends commands to
the FPGA’s DMA engine via PCIe to initiate transfers between host
memory and the FPGA. Furthermore, the kernel driver manages the
transfers, tracking the amount of data sent and received between
the host and FPGA.

To reduce overhead, the driver uses a zero-copy mechanism,
which directly sets up DMA transfers between user buffers and
the hardware device. This removes the CPU overhead of copying
data between kernel space and user space and lets the user set up
the FPGA DMA transfer through ioctl() calls. The user-space
code does this by passing the pointer and length of a data array to
the kernel. The driver then looks up the page tables related to the
pointer and finds the physical addresses of all of the pages related
to this data array. Lastly the driver sets up the DMA transfer using
these physical addresses.

The zero-copy method requires that data should not be modified
or swapped out during the DMA transfer. This can be done by
locking the data in the memory or storing the data in “huge pages,”
which are pre-allocated, persistent, and will not be swapped under
memory pressure. In our system, we use 2 MB huge pages to reduce
the number of DMA descriptors needed to transfer data.

8 EVALUATION
In this section, we evaluate our FPGA-accelerated samplesort sys-
tem in terms of its latency and throughput. First, Section 8.1 de-
scribes the experimental setup. Then, Sections 8.2 and 8.3 evaluate
the system’s latency and throughput, respectively. Because no prior
work on FPGA sorting is able to operate on datasets of this size at
high throughput, we benchmark against parallel software sorters
running on multi-threaded CPUs. Lastly, Section 8.4 shows that
our single-FPGA prototype even outperforms a highly parallel CPU
system with 64 threads.

8.1 Experimental Setup
To evaluate our design, we characterize our prototype on the Ama-
zon AWS F1 [1] FPGA instance f1.2xlarge, which is described in
Table 2. Amazon also provides a larger system f1.16xlarge, which
we use in some comparisons only for its larger host RAM capacity
and its greater number of CPU threads. The f1.16xlarge system
includes eight FPGA boards (each identical to the FPGA board in
the f1.2xlarge, as described in Section 7.1), but all reported results
only require the use of a single FPGA.

The data sets used for our experiments are generated by the
gensort record generator from the Datamation sorting bench-
mark [7], where each record is 100 bytes with a 10 byte key and 90
byte value. To save memory and PCIe bandwidth, we use a common
technique [3] that translates records into (record-key, record-index)
pairs with a 4-byte index, which points to the location of the record

Number of recordsNumber of records
220 221 222 223 224 225 226 227 228 229 230 231

0.001

0.01

0.1

1

10

100

1000

La
te

nc
y

(s
)

GNU Parallel Sort
f1.2xlarge

Figure 10: The latency of sorting a single task.

in the input file. We generate data sets of size 220 to 231 records,
approximately 14 MB to 28 GB of data, which is limited by the host
memory capacity of the f1.2xlarge instance. For all experiments, we
measure the time elapsed when sorting memory-resident key-index
pairs.

To the best of our knowledge, there are no existing high through-
put hardware designs that can process datasets of this magni-
tude, making direct comparison with other FPGA designs impos-
sible. Instead, we benchmark against GNU parallel sort, a widely-
adopted parallel software sorting program, running on state-of-the-
art CPUs.

8.2 Latency of Sorting a Single Task
First, we evaluate our system’s performance by measuring the time
(latency) of sorting a given number of records, and we compare this
with the latency of GNU parallel sort. Wemeasure the latency as the
elapsed time for a single sorting task, which includes sampling and
preparing splitters in software, transmission of the data between
the host and the FPGA, partitioning and sorting on the FPGA,
transmission of the data back to the host, and the final software post-
processing step to fix any oversized buckets. Our system can sort
sequences up to 230 records entirely in hardware (that is, without
additional software partitioning); above this size, the dataset cannot
fit into the FPGA’s DRAM, requiring the CPU to perform an initial
partitioning step as described in Section 3.3 to break the dataset
into smaller buckets.

Figure 10 and Table 3 show the latency of sorting 220 through 231
records with our FPGA-accelerated system (f1.2xlarge) and with our
software benchmark (GNU Parallel Sort) running on the 8-thread
CPU, and Figure 11 shows the speedup of our system relative to
software. We observe an 11.3x to 21.9x performance increase when
the data set can be sorted entirely by the FPGA (≤ 230 records), and
a 7.7x increase for 231 records (where the host CPU must perform
an initial partitioning step before the FPGA can begin).

Figure 12 shows a breakdown of how our system’s work is di-
vided between the CPU and the FPGA. This breakdown explains the
observed latency trends. At 220 records, the CPU takes 33% of the
total runtime for memory allocation, sampling and generating the
splitters. As the data set grows, the percentage of time consumed
by the CPU decreases. We observe this is caused by a nearly con-
stant time for allocating memory. During memory allocation, the
CPU allocates memory for splitters and makes a system call to the
kernel driver to obtain the physical address of this memory. Most
of this time is spent on the context switch between user space and
kernel space. Therefore, the portion of time consumed by the CPU

Table 3: Comparison of the latency of sorting a single task
using GNU sort versus FPGA-accelerated samplesort.

Number of records 220 221 222 223 224 225

GNU sort time (s) 0.049 0.10 0.21 0.44 0.89 1.86
FPGA sort time (s) 0.0043 0.0074 0.013 0.026 0.051 0.10
Speedup 11.3x 13.9x 15.7 17.1 17.6 18.5

Number of records 226 227 228 229 230 231

GNU sort time (s) 3.90 8.05 16.51 31.91 72.52 149.25
FPGA sort time (s) 0.20 0.41 0.81 1.63 3.31 19.36
Speedup 19.3x 19.8x 20.3x 21.4x 21.9x 7.7x

Number of records
S

pe
ed

up
Number of records

S
pe

ed
up

220 221 222 223 224 225 226 227 228 229 230 231
0

5

10

15

20

25

Figure 11: Speedup of FPGA-accelerated samplesort relative
to GNU Sort for sorting a single task

220 221 222 223 224 225 226 227 228 229 230 231

Number of records

0%

25%

50%

75%

100%
FPGA CPU

Figure 12: The proportion of runtime consumed by the
FPGA and CPU when sorting a single task of the given size.

drops to approximately 15% of the total time (dominated by the time
for generating splitters). However, when the data set grows larger
than 230, the CPU must perform one additional step of partitioning,
leading the CPU to consume 76% of the total runtime.

We also observe that the CPU takes a small amount of time for
generating splitters and post-processing oversized buckets (those
that are larger than 2S records and therefore cannot be completely
sorted in hardware). When sorting 230 records, generating splitters
takes 0.5s (16.9% of total time), while post-processing consumes
only 0.0019s (0.05% of total time). Only one out of 218 total buckets
is oversized, yielding probability ∼ 4 × 10−6.

8.3 Throughput of Sorting a Batch of Tasks
Our system’s partitioners and sorter are fully pipelined, allowing
them to concurrently process multiple independent sorting tasks,
yielding increased throughput when sorting a batch of tasks. In
this scenario, the first-stage partitioner can operate on one task

Number of records per taskNumber of records per task

T
hr

ou
gh

pu
t (

M
B

/s
)

220 221 222 223 224 225 226 227 228 229 230
0

1000

2000

3000

4000

5000

6000

7000

8000

FPGA Samplesort
GNU Parallel Sort

Figure 13: Average throughput of sorting 16 tasks.

Number of records per task

S
pe

ed
up

Number of records per task

S
pe

ed
up

220 221 222 223 224 225 226 227 228 229 230
0

5

10

15

20

25

30

35

40

Figure 14: Speedup of FPGA-accelerated samplesort relative
to GNU Sort for sorting 16 tasks.

while the second-stage partitioner and sorters can operate on an-
other. Additionally, the CPU and FPGA runtime can overlapped,
improving throughput further.

To evaluate the system’s throughput, we measured the total time
consumed when sorting 16 independent sorting tasks. However,
this scenario also requires 16 times more RAM on the host CPU
than a single task would require; the f1.2xlarge AWS instance only
has enough RAM to run this test on tasks of up to 226 records.
Therefore, we used the larger AWS instance f1.16xlarge, whose host
has 976GB RAM (8x higher than f1.2xlarge) and identical FPGA
hardware.2 The larger RAM in f1.16xlarge is sufficient to test a
batch of 16 tasks of up to 230 records each.

Figure 13 shows the measured throughput for our system and for
GNU sort running on 8 threads, and Figure 14 shows the correspond-
ing speedup. We observe that the FPGA system’s throughput varies
only slightly with task size (on average 7.2 GB/s, effectively saturat-
ing the system’s PCIe bandwidth) indicating that the throughput is
limited by data transfer time over PCIe. The FPGA’s speedup grows
as the number of records increases, culminating in a 37.4x speedup
when sorting tasks of 230 records.

8.4 Comparison to Highly-Parallel CPU
System

The performance comparison in Section 8.2 was performed us-
ing the CPU and FPGA resources in Amazon’s f1.2xlarge instance,
whose CPU supports eight parallel threads. As a final confirma-
tion of the benefits of our accelerator, we compare our system to a
much more extreme test: a larger instance (f1.16xlarge) with 64 CPU
2Although f1.16xlarge instances include 64 CPU threads and eight FPGA boards, for
consistency, we use only 8 threads and one FPGA in this comparison. Where possible
(220 through 226 records), we ran experiments on both instances and ensured that
differences were negligible.

Number of records per task

S
pe

ed
up

Number of records per task

S
pe

ed
up

220 221 222 223 224 225 226 227 228 229 230
1

2

3

4

5

6

7

8

Sorting a batch of tasks
Sorting a single task

Figure 15: Speedup of FPGA-accelerated samplesort relative
GNU sort running on 64 threads.

threads. The higher parallelism available from the larger number
of CPU cores substantially increases the speed of the software sort
implementation. We measured the performance of GNU Parallel
Sort for the data set from 220 to 230 records on the large instance
using 64 threads.

Figure 15 shows the speedup of our FPGA-accelerated sample-
sort system relative to GNU Parallel Sort using 64 threads. We
observe that our single-FPGA system still can achieve considerable
improvement even relative to this massively more powerful CPU
system: 5.7x higher throughput and 3.4x lower latency (both at 230
records).

9 CONCLUSIONS
Although prior work has shown that FPGAs can efficiently sort a
data set that fits in on-chip memory, existing approaches exhibit a
lack of scalability to large data sizes, typically limited by the time
and memory bandwidth required for merging sorted subsequences.

In this work, we proposed a new technique for using an FPGA
to accelerate the samplesort algorithm. Our method uses a novel
multi-stage hardware partitioner combined with a streaming sorter
to provide a high throughput solution for sorting large data sets.
In our system, hardware in the FPGA cooperates with software
running on the host CPU to enable scalability and efficient sorting.

We implemented and tested a prototype of our sorting system
on an Amazon AWS F1 FPGA instance with a Xilinx UltraScale+
VU9P FPGA. Our prototype demonstrates an average throughput
of 7.2 GB/s when sorting tasks of 230 records, effectively saturating
the PCIe bandwidth of the system. No prior research has explored
sorting data sets of this magnitude with high throughput hard-
ware. Compared to multi-threaded software (GNU parallel sort on 8
threads), our system demonstrates a 21.9x improvement in latency
(sorting 230 records) and a 37.4x throughput improvement when
sorting a batch of tasks (230 records per task).

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
through research grants CCF-#1452904 and CCF-#1725543. We
would also like to thank Amazon Web Services, Inc for providing
AWS credits to run the experiments on the F1 instances.

REFERENCES
[1] Amazon. [n.d.]. Amazon EC2 F1 Instances. Retrieved September 15, 2019 from

https://aws.amazon.com/ec2/instance-types/f1/
[2] Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. 2015.

Practical Massively Parallel Sorting. In Proceedings of the 27th ACM on Symposium

https://aws.amazon.com/ec2/instance-types/f1/

on Parallelism in Algorithms and Architectures (SPAA ’15). ACM, New York, NY,
USA, 13–23. https://doi.org/10.1145/2755573.2755595

[3] D. A. Bell. 1958. The Principles of Sorting. Comput. J. 1, 2 (Jan. 1958), 71–77.
https://doi.org/10.1093/comjnl/1.2.71

[4] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J.
Smith, and Marco Zagha. 1991. A Comparison of Sorting Algorithms for the
Connection Machine CM-2. In Proceedings of the Third Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA ’91). ACM, New York, NY, USA,
3–16. https://doi.org/10.1145/113379.113380

[5] Coenraad Bron. 1972. Merge Sort Algorithm [M1]. Commun. ACM 15, 5 (May
1972), 357–358. https://doi.org/10.1145/355602.361317

[6] David J. DeWitt, Je Key F. Naughton, and Donovan A. Schneider. 1991. Parallel
sorting on a shared-nothing architecture using probabilistic splitting. In Proceed-
ings of the First International Conference on Parallel and Distributed Information
Systems. IEEE, 280–291. https://doi.org/10.1109/PDIS.1991.183115

[7] Anon et al. 1985. A Measure of Transaction Processing Power. Datamation 31, 7
(April 1985), 112–118. http://dl.acm.org/citation.cfm?id=13900.18159

[8] William D. Frazer and Archie C. McKellar. 1970. Samplesort: A Sampling Ap-
proach to Minimal Storage Tree Sorting. J. ACM 17, 3 (July 1970), 496–507.
https://doi.org/10.1145/321592.321600

[9] Goetz Graefe. 2003. Sorting And Indexing With Partitioned B-Trees (CIDR ’03).
[10] Goetz Graefe. 2006. Implementing Sorting in Database Systems. ACM Comput.

Surv. 38, 3, Article 10 (Sept. 2006). https://doi.org/10.1145/1132960.1132964
[11] Charles A.R. Hoare. 1961. Algorithm 64: Quicksort. Commun. ACM 4, 7 (July

1961), 321–. https://doi.org/10.1145/366622.366644
[12] Charles A.R. Hoare. 1962. Quicksort. Comput. J. 5, 1 (Jan. 1962), 10–16. https:

//doi.org/10.1093/comjnl/5.1.10
[13] Donald E. Knuth. 1998. The Art of Computer Programming, Vol. 3: Sorting and

Searching (2nd. ed.). Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA.

[14] Dirk Koch and Jim Torresen. 2011. FPGASort: A High Performance Sorting
Architecture Exploiting Run-time Reconfiguration on FPGAs for Large Problem
Sorting. In Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’11). ACM, New York, NY, USA, 45–54. https:
//doi.org/10.1145/1950413.1950427

[15] Nikolaj Leischner, Vitaly Osipov, and Peter Sanders. 2010. GPU sample sort. In
2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS)
(IPDPS ’10). IEEE, 1–10. https://doi.org/10.1109/IPDPS.2010.5470444

[16] Susumu Mashimo, Thiem Van Chu, and Kenji Kise. 2017. High-Performance
Hardware Merge Sorter. In 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM) (FCCM ’17). IEEE, 1–8.
https://doi.org/10.1109/FCCM.2017.19

[17] Philippos Papaphilippou, Chris Brooks, and Wayne Luk. 2018. FLiMS: Fast
Lightweight Merge Sorter. In 2018 International Conference on Field-Programmable
Technology (FPT) (FPT ’18). IEEE, 78–85. https://doi.org/10.1109/FPT.2018.00022

[18] Makoto Saitoh, Elsayed A. Elsayed, Thiem Van Chu, Susumu Mashimo, and Kenji
Kise. 2018. A High-Performance and Cost-Effective Hardware Merge Sorter
without Feedback Datapath. In 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM) (FCCM ’18). IEEE,
197–204. https://doi.org/10.1109/FCCM.2018.00038

[19] Makoto Saitoh and Kenji Kise. 2018. Very Massive Hardware Merge Sorter. In
2018 International Conference on Field-Programmable Technology (FPT) (FPT ’18).
IEEE, 86–93. https://doi.org/10.1109/FPT.2018.00023

[20] Edgar Solomonik and Laxmikant V. Kalè. 2010. Highly scalable parallel sorting.
In 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS)
(IPDPS ’10). IEEE, 1–12. https://doi.org/10.1109/IPDPS.2010.5470406

[21] Wei Song, Dirk Koch,Mikel Luján, and JimGarside. 2016. Parallel hardwaremerge
sorter. In 2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM) (FCCM ’16). IEEE, 95–102. https://doi.org/
10.1109/FCCM.2016.34

[22] Takuma Usui, Thiem Van Chu, and Kenji Kise. 2016. A Cost-Effective and
Scalable Merge Sorter Tree on FPGAs. In 2016 Fourth International Symposium
on Computing and Networking (CANDAR) (CANDAR ’16). IEEE, 47–56. https:
//doi.org/10.1109/CANDAR.2016.0023

[23] Chi Zhang, Ren Chen, and Viktor Prasanna. 2016. High Throughput Large Scale
Sorting on a CPU-FPGA Heterogeneous Platform. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW) (IPDPSW ’16).
IEEE, 148–155. https://doi.org/10.1109/IPDPSW.2016.117

[24] Marcela Zuluaga, Peter Milder, and Markus Püschel. 2016. Streaming Sorting
Networks. ACM Trans. Des. Autom. Electron. Syst. 21, 4, Article 55 (May 2016),
30 pages. https://doi.org/10.1145/2854150

https://doi.org/10.1145/2755573.2755595
https://doi.org/10.1093/comjnl/1.2.71
https://doi.org/10.1145/113379.113380
https://doi.org/10.1145/355602.361317
https://doi.org/10.1109/PDIS.1991.183115
http://dl.acm.org/citation.cfm?id=13900.18159
https://doi.org/10.1145/321592.321600
https://doi.org/10.1145/1132960.1132964
https://doi.org/10.1145/366622.366644
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/1950413.1950427
https://doi.org/10.1145/1950413.1950427
https://doi.org/10.1109/IPDPS.2010.5470444
https://doi.org/10.1109/FCCM.2017.19
https://doi.org/10.1109/FPT.2018.00022
https://doi.org/10.1109/FCCM.2018.00038
https://doi.org/10.1109/FPT.2018.00023
https://doi.org/10.1109/IPDPS.2010.5470406
https://doi.org/10.1109/FCCM.2016.34
https://doi.org/10.1109/FCCM.2016.34
https://doi.org/10.1109/CANDAR.2016.0023
https://doi.org/10.1109/CANDAR.2016.0023
https://doi.org/10.1109/IPDPSW.2016.117
https://doi.org/10.1145/2854150

	Abstract
	1 Introduction
	2 Motivation
	3 FPGA Acceleration of Samplesort
	3.1 Samplesort
	3.2 Hardware-Software Samplesort Strategy
	3.3 Scalability

	4 Hardware Architecture
	5 Partitioning Hardware
	5.1 Parallel Partitioner
	5.2 Multi-stage Partitioning

	6 Sorting Subsystem
	7 Implementation
	7.1 Hardware Implementation
	7.2 Software Implementation

	8 Evaluation
	8.1 Experimental Setup
	8.2 Latency of Sorting a Single Task
	8.3 Throughput of Sorting a Batch of Tasks
	8.4 Comparison to Highly-Parallel CPU System

	9 Conclusions
	Acknowledgments
	References

